On the Convergence of Rational Ritz Values
نویسندگان
چکیده
Ruhe’s rational Krylov method is a popular tool for approximating eigenvalues of a given matrix, though its convergence behavior is far from being fully understood. Under fairly general assumptions we characterize in an asymptotic sense which eigenvalues of a Hermitian matrix are approximated by rational Ritz values and how fast this approximation takes place. Our main tool is a constrained extremal problem from logarithmic potential theory, where an additional external field is required for taking into account the poles of the underlying rational Krylov space. Several examples illustrate our analytic results.
منابع مشابه
On the construction of symmetric nonnegative matrix with prescribed Ritz values
In this paper for a given prescribed Ritz values that satisfy in the some special conditions, we find a symmetric nonnegative matrix, such that the given set be its Ritz values.
متن کاملFurther results on the convergence behaviour of CG and Ritz values ∗
The usual estimates for conjugate gradients (CG) specify a non–trivial rate of convergence right from the beginning. We investigate situations where the same can be said for Ritz values (considered as approximations to eigenvalues). We investigate the effect on the convergence behaviour of Ritz values of multiplying the weight functions by certain functions of polynomial growth. This will be sh...
متن کاملRICE UNIVERSITY Ritz Values and Arnoldi Convergence for Nonsymmetric Matrices
Ritz Values and Arnoldi Convergence for Nonsymmetric Matrices by Russell Carden The restarted Arnoldi method, useful for determining a few desired eigenvalues of a matrix, employs shifts to refine eigenvalue estimates. In the symmetric case, using selected Ritz values as shifts produces convergence due to interlacing. For nonsymmetric matrices the behavior of Ritz values is insufficiently under...
متن کاملOn the Convergence of Q-ritz Pairs and Refined Q-ritz Vectors for Quadratic Eigenvalue Problems
For a given subspace, the q-Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the q-Rayleigh-Ritz method defines the q-Ritz values and the q-Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the...
متن کاملVibration Analysis for Rectangular Plate Having a Circular Central Hole with Point Support by Rayleigh-Ritz Method
In this paper, the transverse vibrations of rectangular plate with circular central hole have been investigated and the natural frequencies of the mentioned plate with point supported by Rayleigh-Ritz Method have been obtained. In this research, the effect of the hole is taken into account by subtracting the energies of the hole domain from the total energies of the whole plate. To determine th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 31 شماره
صفحات -
تاریخ انتشار 2010